摘要

Nature has engineered universal, catechol-containing adhesives which can be synthetically mimicked in the form of polydopamine (PDA). In this study, PDA was exploited to enable the formation of block copolymer (BCP) nanopatterns on a variety of soft material surfaces. While conventional PDA coating times (1 h) produce a layer too rough for most applications of BCP nanopatterning, we found that these substrates could be polished by bath sonication in a weakly basic solution to form a conformal, smooth (root-mean-square roughness similar to 0.4 nm), and thin (3 nm) layer free of large prominent granules. This chemically functionalized, biomimetic layer served as a reactive platform for subsequently grafting a surface neutral layer of poly(styrene-random-methyl methacrylate-random-glycidyl methacrylate) to perpendicularly orient lamellae-forming poly(styrene-block-methyl methacrylate) BCP. Moreover, scanning electron microscopy observations confirmed that a BCP nanopattem on a poly(ethylene terephthalate) substrate was not affected by bending with a radius of similar to 0.5 cm. This procedure enables nondestructive, plasma-free surface modification of chemically inert, low-surface energy soft materials, thus overcoming many current chemical and physical limitations that may impede high throughput, roll-to-roll nanomanufacturing.

  • 出版日期2016-3-23