摘要

For a gray image, every row (column) can be seen as an irregular wave. Activated by the architecture of permutation-diffusion based image encryption scheme, a chaotic image encryption algorithm is proposed to change the representation of irregular waves in the plain-image. To reduce the high correlation, permutation for both rows and columns is taken in the first stage. Due to the transposition of pixels in row/column, wave shapes will be changed according to the pseudo-random sequences generated from chaotic map. Specifically, pixels in each wave (row or column) are divided into two groups by energy (a bigger one and a smaller one). Then different groups are employed to manipulate the production of chaotic sequence. As a result, the chosen-plaintext and known-plaintext attacks will be difficult due to the plain-image dependent keystream. In the second stage, wave-by-wave diffusion in column is carried out such that any tiny change in the plain-image spreads out uniformly to the whole cipher-image. The keystream used in diffusion is designed again dependent on the permuted image obtained from the first stage. In this way, the security of the proposed algorithm can be further strengthened compared with some existing algorithms. Related security analyses also show that our method can satisfy common requirements of secure communication for daily images.