摘要

BACKGROUND & AIMS: The winged helix transcription factors Foxa1 and Foxa2 are expressed in all epithelia of the gastrointestinal tract from its embryonic origin into adulthood. In vitro studies have shown that Foxa1/a2 can transactivate the promoters of Mucin 2 (Muc2), which is expressed in goblet cells, and of preproglucagon, which is expressed in enteroenclocrine cells. These findings suggest Foxa1/a2 as critical factors in the differentiation of gut epithelial cells. METHODS: Mice with intestine-specific simultaneous deletion of Foxa1 and Foxa2 were derived using the Cre-loxP system and analyzed using histologic and molecular means. RESULTS: Both Foxa1 and Foxa2 were deleted successfully in the epithelia of the small intestine and colon using Villin-Cre mice. Immunohistochemical staining showed that Foxa1/a2 mutants lack glucagon-like peptide-1- and peptide-2-expressing cells (L-cells), and have reduced numbers of somatostatin (D-cells) and peptide W-expressing cells (L-cells). Preproglucagon, somatostatin, and peptide YY messenger RNA (mRNA) levels also were reduced significantly in Foxa1/a2 mutants. Thus, Foxa1 and Foxa2 are essential regulators of these enteroendocrine lineages in vivo. The mRNA levels of transcription factors Islet-1 and Pax6 were reduced significantly in the small intestine, showing that Foxa1 and Foxa2 impact on a transcription factor network in the enteroenclocrine lineage. In addition, deletion of Foxa1/a2 caused a reduction in goblet cell number with altered expression of the secretory mucins Muc2, Mucin5b, Mucin5ac, and Mucin 6. CONCLUSIONS: The winged helix factors Foxa1 and Foxa2 are essential members of the transcription factor network that govern secretory cell differentiation in the mammalian gastrointestinal tract.

  • 出版日期2009-12