摘要

It is well known that the sudden intrusion of Kuroshio warm water into the Bungo Channel (kyucho) is regulated by spring-neap tidal forcing. In order to clarify the physical background behind this regulation, numerical experiments are carried out using a high-resolution non-hydrostatic three-dimensional model. We first reproduce the strong mixing region off the east coast of the Bungo Channel resulting from tidal flow interaction with complicated land configurations during spring tides; behind islands and headlands, small-scale eddies satisfying an approximate cyclostrophic balance are generated. As a result, averaged over the whole model domain, the tidal-mean energy dissipation rate reaches a parts per thousand 1.6 x 10(-6) W kg(-1). The model predicted energy dissipation rates at the location and times of direct microstructure measurements in the Bungo Channel are comparable to the observed values. We next examine whether or not strong tidal mixing thus reproduced can inhibit the northward intrusion of Kuroshio warm water in the Bungo Channel. It is shown that the Kuroshio warm water can (or cannot) pass through the tidal mixing regions off the east coast of the Bungo Channel during periods of weakened (or enhanced) tidal mixing at neap (or spring) tides. This indicates that taking into account the realistic spring-neap modulation of tidal mixing intensity is indispensable to further increase the ability of the existing forecast system for kyucho in the Bungo Channel.

  • 出版日期2012-10