摘要

The purpose of the study is to identify long-range transport patterns that may have an important influence on PM10 levels in three European cities at different latitudes, namely Thessaloniki, Szeged and Helsinki. A further aim is to separate medium- and long-range PM10 transport for these cities. 4-day, 6-hourly three-dimensional (3D) backward trajectories arriving at these locations at 1200 GMT were computed using the HYSPLIT model over a 5-year period from 2001 to 2005. A k-means clustering algorithm using the Mahalanobis metric was applied in order to develop trajectory types. The 3D delimination of the clusters by the function "convhull" is a novel approach. Two statistical indices were used to evaluate and compare critical daily PM10 exceedances corresponding to the trajectory clusters. For Thessaloniki, the major PM10 transport can be clearly associated with air masses arriving from Central and Southern Europe. Occasional North African dust intrusions over Greece are also found. The transport of particulate matter from North-western Europe to Thessaloniki is of limited importance. For Szeged, Central Europe, Southern Europe and Mid-eastern Europe are the most important sources of PM10. The occasional appearance of North African-origin dust over Hungary is also detected. Local PM10 levels tend to be diluted when air masses arrive at the Carpathian Basin from North-western Europe, the Mid-Atlantic - Western Europe and Northern Europe. For Helsinki, high PM10 concentrations are due to air masses coming from Northern and Eastern Europe including North-western Russia. An occasional Caspian Sea desert influence on particulate levels can also be identified. However, air currents coming from the Northern Atlantics, Northern and North-western Europe tend to dilute PM10 levels. A simple approach is developed in order to separate medium- and long-range PM10 transport for each city.

  • 出版日期2011-5