摘要

Carbon dots (C-dots) are a kind of fluorescent nanoparticles that are strongly fluorescent, non-blinking, and can be easily synthesized at low cost. Their emission color can be tuned by varying the excitation wavelength. Their properties make them strong competitors to semiconductor quantum dots. Synthetic approaches for C-dots can be classified into two categories, viz. top-down and bottom-up methods. Surface passivated and functionalized C-dots can be utilized to sense pH values, metal ions and organic molecules. Owing to their low cytotoxicity, biocompatibility and impressive photostability, long-term observations become possible. C-dots also show promise as labels and for bioimaging. This review (with 142 refs.) is divided into several sections. The first covers commonly used methods for preparation of C-dots including laser ablation, arc discharge, electrochemical methods, pyrolytic processes, template based methods, microwave assisted methods, chemical oxidation methods, reverse micelle based methods, etc. The first section also covers methods for surface functionalization and passivation. We continue by discussing the spectroscopic properties and other physical and chemical properties of C-dots (fluorescence, up-conversion fluorescence, methods for enhancing photoluminescence, effects of pH value, cytotoxicity, etc.). Another section covers the characterization including TEM and XRD. Applications in biology are summarized and subdivided into in vitro imaging, in vivo imaging, chemical probe, quantitation of biomacromolecules, but also in drug delivery, photoacoustic imaging and anticancer therapy. We finally discuss current challenges and perspectives in this promising field.