摘要

The upcoming European chemicals legislation REACH (Registration, Evaluation, and Authorisation of Chemicals) will require the risk assessment of many thousands of chemicals. It is therefore necessary to develop intelligent testing strategies to ensure that chemicals of concern are identified whilst minimising the testing of chemicals using animals. Xenobiotics may perturb the reproductive cycle, and for this reason several reproductive studies are recommended under REACH. One of the endpoints assessed in this battery of tests is mating performance and fertility. Animal tests that address this endpoint use a relatively large number of animals and are also costly in terms of resource, time, and money. If it can be shown that data from non-reproductive studies such as in-vitro or repeat-dose toxicity tests are capable of generating reliable alerts for effects on fertility then some animal testing may be avoided. Available rat sub-chronic and fertility data for 44 chemicals that have been classified by the European Union as toxic to fertility were therefore analysed for concordance of effects. Because it was considered appropriate to read across data for some chemicals these data sets were considered relevant for 73 of the 102 chemicals currently classified as toxic to reproduction (fertility) under this system. For all but 5 of these chemicals it was considered that a well-performed sub-chronic toxicity study would have detected pathology in the male, and in some cases, the female reproductive tract. Three showed evidence of direct interaction with oestrogen or androgen receptors (linuron, nonylphenol, and fenarimol). The remaining chemicals (quinomethionate and azafenidin) act by modes of action that do not require direct interaction with steroid receptors. However, both these materials caused in-utero deaths in pre-natal developmental toxicity studies, and the relatively low NOAELs and the nature of the hazard identified in the sub-chronic tests provides an alert for possible effects on fertility (or early embryonic development), the biological significance of which can be ascertained in a littering (e.g. 2-generation) study. From the chemicals reviewed it would appear that where there are no alerts from a repeat-dose toxicity study, a pre-natal developmental toxicity study and sex steroid receptor binding assays, there exists a low priority for animal studies to address the fertility endpoint. The ability. for these types of tests to provide alerts for effects on fertility is clearly dependent on the mode of action of the toxicant in question. Further work should therefore be performed to determine the 'failure rate' of this type of approach when applied to a larger group of chemicals with diverse modes of action.

  • 出版日期2007-8