摘要

Using the DFT-B3LYP calculations we investigate the adsorption of Li atom on CNT, BNNT, AlNNT and SiCNT. We found that Li atom can be chemisorbed on zig-zag SiCNT with binding energy of -2.358 eV and charge transfer of 0.842 vertical bar e vertical bar, which are larger than the results of other nanotubes. The binding energy of Li on SiCNT is foun to be stronger than activation energy barrier indicating that Li metal could be well dispersed on SiCNTs. Furthermore, the average voltage caused by the lithium adsorption on SiCNT demonstrated that SiCNTs could exhibit as a stable anode similar to the lithium metal anode. The binding nature has been rationalized by analyzing the electronic structures. Our findings demonstrate that Li-BNNT, Li-SiCNT and Li-AlNNT systems exhibit spin polarized behaviors and can fascinating potential application in future spintronics. Also, Li-SiCNT system with rather small band gap might be a promising material for optical applications and active molecule in its environment.

  • 出版日期2016-3