摘要

Gauging the potential impacts of environmental change on the geographic distributions of species is a central area of modern biogeographic analysis, often involving complex models of species-environment interactions. The geographic distribution of fossil species can also provide a framework to test the impact of environmental change on biogeography and ecological niches of species, yet few paleontological analyses have attacked this question in deep time. Herein we present a quantitative biogeographic analysis to examine the stability of ecological niches and geographic ranges of rhynchonelliform brachiopods during an interval of sea level change preserved in Upper Ordovician strata of the Cincinnati Arch. The intensive sampling, excellent preservation, and numerous prior paleoecological and sedimentological analyses within the tri-state region of Kentucky, Indiana, and Ohio provide a robust framework for detailed paleobiogeographic study. Quantitative biogeographic modeling methods incorporating GIS (Geographic Information Systems) are utilized in order to spatially analyze the geographic ranges of brachiopod species of the Corryville and Mt. Auburn Formations of the C3 (uppermost Maysvillian) depositional sequence.
This study employs the ecological niche modeling program GARP (Genetic Algorithm using Rule-set Prediction) to predict the geographic distribution of eight brachiopod species during three time slices within the C3 sequence. This method estimates a species' geographic range by modeling the ecological niche of the species based on a set of known species occurrence data coupled with environmental data inferred from sedimentologic proxies. Once environmental tolerances for a species are modeled; the species is predicted to occur wherever its preferred set of environmental conditions occurs within the study region.
Distributional patterns were reconstructed for three time slices during the C3 sequence. Recovered range predictions were quantitatively analyzed for evidence of temporal range changes. Results indicate that average species range within the study area decreased and species tracked their preferred niche with high fidelity during the transition from the early to middle portions of the C3 depositional sequence, an interval of rapid relative sea level change. However, during the transition from the middle to late portions of the sequence, gradual shallowing within the basin and development of discontinuous habitat patches correlates with niche evolution of five of the eight species modeled. The average area a species occupied within the basin increased during this interval, but there is a mixed response including both increases and decreases in range size within the study group. In general, the species that exhibit niche evolution increased their geographic range size while those that continue to track their niche with high fidelity experience a decrease in geographic range size. During the latter half of the C3 sequence, previously continuous habitats become fragmented, thereby isolating individual populations and providing a mechanism for niche evolution. The rate of sea level change and the corresponding fragmentation of previously continuous habitats into isolated patches appear to be the primary controls on both mean geographic range size and relative degree of niche evolution.

  • 出版日期2011-1-1