摘要

We found that plasmonic Au particles on titanium(IV) oxide (TiO2) act as a visible-light-driven photocatalyst for overall water splitting free from any additives. This is the first report showing that surface plasmon resonance (SPR) in a suspension system effectively induces overall water splitting. Modification with various types of metal nanoparticles as co-catalysts enhanced the evolution of H-2 and O-2. Among these, Ni-modified Au/TiO2 exhibited 5-times higher rates of H-2 and O-2 evolution than those of Ni-free Au/TiO2. We succeeded in designing a novel solar energy conversion system including three elemental technologies, charge separation with light harvest and an active site for O-2 evolution (plasmonic Au particles), charge transfer from Au to the active site for H-2 production (TiO2), and an active site for H-2 production (Ni cocatalyst), by taking advantage of a technique for fabricating size-controlled Au and Ni nanoparticles. Water splitting occurred in aqueous suspensions of Ni-modified Au/TiO2 even under irradiation of light through an R-62 filter.

  • 出版日期2017