摘要

A new robust MPEG-based novel look-up table (MPEG-NLUT) is proposed for accelerated computation of video holograms of fast-moving three-dimensional (3-D) objects in space. Here, the input 3-D video frames are sequentially grouped into sets of four, in which the first and remaining three frames in each set become the reference (RF) and general frames (GFs). Then, the frame images are divided into blocks, from which motion vectors are estimated between the RF and each of the GFs, and with these estimated motion vectors, object motions in all blocks are compensated. Subsequently, only the difference images between the motion-compensated RF and each of the GFs are applied to the NLUT for CGH calculation based on its unique property of shift-invariance. Experiments with three types of test 3-D video scenarios confirm that the average number of calculated object points and the average calculation time of the proposed method, have found to be reduced down to 27.34%, 55.46%, 45.70% and 19.88%, 44.98%, 30.72%, respectively compared to those of the conventional NLUT, temporal redundancy-based NLUT (TR-NLUT) and motion compensation-based NLUT (MC-NLUT) methods.

  • 出版日期2014-4-7