摘要

Piezoceramic actuators are capable of precise positioning with high force, but suffer from limited displacement range, which has hindered their application in the field of magnetic resonance elastography (MRE). The objective of this study was to investigate the feasibility of using a mechanical amplifier in combination with a piezoceramic actuator for the application of endorectal prostate MRE. A five-bar symmetric structure was designed in ANSYS (R) and manufactured out of brass. Laser vibrometer measurements were used to characterize the amplitude of the CMA actuator while attached to masses in the 0-325 g range and over operating frequencies of 90-500 Hz. The response of the CMA was investigated while mechanically coupled to a balloon type endorectal coil. The resonant frequency of the prototype CMA actuator was predicted within 10% error using ANSYS simulations. The amplification ratio of the CMA actuator was measured to be 10 with the laser vibrometer and 7.6 +/- 1.7 (max: 9.2, min: 6.5) using MRE, at a vibration frequency of 200 Hz. Laser vibrometer data also showed that the CMA actuator's performance did not change whether it was connected to an empty or inflated endorectal. The feasibility of performing endorectal prostate MRE with a CMA actuator was successfully demonstrated in a human volunteer.

  • 出版日期2017-8