Modification of sphingolipid metabolism by tamoxifen and N-desmethyltamoxifen in acute myelogenous leukemia-Impact on enzyme activity and response to cytotoxics

作者:Morad Samy A F; Tan Su Fern; Feith David J; Kester Mark; Claxton David F; Loughran Thomas P Jr; Barth Brian M; Fox Todd E; Cabot Myles C*
来源:Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids, 2015, 1851(7): 919-928.
DOI:10.1016/j.bbalip.2015.03.001

摘要

The triphenylethylene antiestrogen, tamoxifen, can be an effective inhibitor of sphingolipid metabolism. This offtarget activity makes tamoxifen an interesting ancillary for boosting the apoptosis-inducing properties of ceramide, a sphingolipid with valuable tumor censoring activity. Here we show for the first time that tamoxifen and metabolite, N-desmethyltamoxifen (DMT), block ceramide glycosylation and inhibit ceramide hydrolysis (by acid ceramidase, AC) in human acute myelogenous leukemia (AML) cell lines and in AML cells derived from patients. Tamoxifen (1-10 mu M) inhibition of AC in AML cells was accompanied by decreases in AC protein expression. Tamoxifen also depressed expression and activity of sphingosine kinase 1 (SphK1), the enzymecatalyzing production of mitogenic sphingosine 1-phosphate (S1-P). Results from mass spectroscopy showed that tamoxifen and DMT (i) increased the levels of endogenous C16:0 and C24:1 ceramide molecular species, (ii) nearly totally halted production of respective glucosylceramide (GC) molecular species, (iii) drastically reduced levels of sphingosine (to 9% of control), and (iv) reduced levels of S1-P by 85%, in vincristine-resistant HL-60/VCR cells. The co-administration of tamoxifen with either N-(4-hydroxyphenyl)retinamide (4-HPR), a ceramide-generating retinoid, or a cell-deliverable form of ceramide, C6-ceramide, resulted in marked decreases in HL-60/VCR cell viability that far exceeded single agent potency. Combination treatments resulted in synergistic apoptotic cell death as gauged by increased Annexin V binding and DNA fragmentation and activation of caspase-3. These results show the versatility of adjuvant triphenylethylene with ceramide-centric therapies for magnifying therapeutic potential in AML Such drug regimens could serve as effective strategies, even in the multidrugresistant setting.

  • 出版日期2015-7