A Simple Method for Nanostructure Engineering of Mesoporous Zinc Silicate Particles

作者:Choi Hoon; Um Kiju; Im Minyoung; Lee Kangtaek*
来源:Chemistry of Materials, 2015, 27(7): 2343-2349.
DOI:10.1021/cm503768j

摘要

We report a novel method to engineer a 'nanostructure of Zinc siliCate particles: In this method, a mixture of tetraetlioxysilane, zinc acetate, and cetyltrimethylammonimn chloride (CTAC) was reacted in water at 80 degrees C for h, followed by calcination. This method produced mesoporous zinc silicate particles With a core-shell structure in which the core contained a mixed oxide of ZiO and SiO2, whereas the shell was pure SiO2. We found a faster formation of mixed oxide than pure SiO2, which is believed to be responsible for the core shell structure. On the basis of thisunderstanding, we engineered the nanostructure Of the synthesized-partides: (1) zinc, oxide in the core was dissolved by citrate buffer to produee hollow inesoporous silica particles, and (2) a layer-by-layer deposition technique ins used to grow mesoporous shells on the existing particles, producing multishell niesopotous particles with various morphologies. Using a nitrogen sorption method, the average pore diameter of mesopOrous zinc silicate particles was found to be 3.4 nm, which is similar to the diameter of spherical CTAC Micelles. We also tested the adsorption capacity of hollow mesoporous silica particles using water soluble anionic (8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt) and cationic (rhodarnine B) dyes, and we found a high adsorption capacity for the cationic dye but negligible adsorption for the anionic dye. Finally, we compared release profiles of rhodamine B from hollow mesoporous silica pm-tides with different morphologies.

  • 出版日期2015-4-14