摘要

While chemical vapor deposition of diamond films is currently cost prohibitive for biosensor construction, in this paper, we show that sonication-assisted nanostructuring of biosensing electrodes with nanodiamonds (NDs) allows harnessing the hydrolytic stability of the diamond biofunctionalization chemistry for real-time continuous sensing, while improving the detector sensitivity and stability. We find that the higher surface coverages were important for improved bacterial capture and can be achieved through proper choice of solvent, ND concentration, and seeding time. A mixture of methanol and dimethyl sulfoxide provides the highest surface coverage (33.6 +/- 3.4%) for the NDs with positive zeta-potential, compared to dilutions of dimethyl sulfoxide with acetone, ethanol, isopropyl alcohol, or water. Through impedance spectroscopy of ND-seeded interdigitated electrodes (IDEs), we found that the ND seeds serve as electrically conductive islands only a few nanometers apart. Also we show that the seeded NDs are amply hydrogenated to be decorated with antibodies using the UV-alkene chemistry, and higher bacterial captures can be obtained compared to our previously reported work with diamond films. When sensing bacteria from 10(6) cfu/mL E. coli 0157:H7, the resistance to charge transfer at the IDEs decreased by similar to 38.8%, which is nearly 1.5 times better than that reported previously using redox probes. Further in the case of 10(8) cfu/mL E. coli 0157:H7, the charge transfer resistance changed by similar to 46%, which is similar to the magnitude of improvement reported using magnetic nanoparticle-based sample enrichment prior to impedance detection. Thus ND seeding allows impedance biosensing in low conductivity solutions with competitive sensitivity.

  • 出版日期2014-2