摘要

How to use shared entanglement and forward classical communication to remotely prepare an arbitrary (mixed or pure) state has been fascinating quantum information scientists. Berry has given a constructive scheme for remotely preparing a general pure state, using a pure entangled state and finite classical communication. To optimize the classical communication cost, Berry employed a coding of the high-dimensional target state. Though working in the high-dimensional cases, the coding method is inapplicable for low-dimensional systems, such as a pure qubit. Since qubit plays a central role in quantum information theory, here we propose an optimization procedure which can be used to minimize the classical communication cost in preparing a general pure qubit. Interestingly, our optimization procedure is linked to the uniform arrangement of points on the Bloch sphere, which provides a geometric description.