摘要

In China, the electricity sector consumes approximately 50% of the coal and emits 40% of the CO2 from fossil fuel combustion. The unbalanced spatial distribution between energy resources and demands and the remarkable differences in power-generation capabilities among regions are important factors that impede decarbonization of China's electricity sector. Utilization of the abundant low-carbon energy resources in the central and western regions is restricted by limited local demand. Energy demand in these regions accounts for approximately 26% of the entire nation's demand. By comparison, the regions have more than 45% of the energy resources. However, long-distance energy delivery incurs considerable losses. At present, approximately 80% of inter-regional energy delivery uses primary coal transport and 20% travels by secondary electricity transmission. The Chinese government is planning to build an ambitious inter-regional transmission grid for energy delivery. We demonstrate that this plan would significantly change the current delivery patterns and improve delivery efficiency. Approximately 40% of inter-regional energy delivery would travel by secondary electricity transmission and a 25% improvement in the delivery efficiency of the entire system is expected. Therefore, utilization of low-carbon energy resources would be promoted and overall carbon emission would be reduced. Using a fine-grained electricity dispatch model to simulate and optimize the operation of the power system, the carbon emission mitigation potential is quantitatively assessed based on real planning data. The results indicate a significant 10% reduction in CO2 emissions in 2030, amounting to 0.49 Gt. This reduction should be included as an important component for the sector's low-carbon budget. Finally, we assess the potential for further reductions in carbon emissions by making modifications to the planned transmission grid.