Embryological Origin of Human Smooth Muscle Cells Influences Their Ability to Support Endothelial Network Formation

作者:Bargehr Johannes; Low Lucinda; Cheung Christine; Bernard William G; Iyer Dharini; Bennett Martin R; Gambardella Laure; Sinha Sanjay*
来源:Stem Cells Translational Medicine, 2016, 5(7): 946-959.
DOI:10.5966/sctm.2015-0282

摘要

Vascular smooth muscle cells (SMCs) from distinct anatomic locations derive from different embryonic origins. Here we investigated the respective potential of different embryonic origin-specific SMCs derived from human embryonic stem cells (hESCs) to support endothelial network formation in vitro. SMCs of three distinct embryological origins were derived from an mStrawberry-expressing hESC line and were cocultured with green fluorescent protein-expressing human umbilical vein endothelial cells (HUVECs) to investigate the effects of distinct SMC subtypes on endothelial network formation. Quantitative analysis demonstrated that lateral mesoderm (LM)-derived SMCs best supported HUVEC network complexity and survival in three-dimensional coculture in Matrigel. The effects of the LM derived SMCs on HUVECs were at least in part paracrine in nature. A TaqMan array was performed to identify the possible mediators responsible for the differential effects of the SMC lineages, and a microarray was used to determine lineage-specific angiogenesis gene signatures. Midkine (MDK) was identified as one important mediator for the enhanced vasculogenic potency of LM-derived SMCs. The functional effects of MDK on endothelial network formation were then determined by small interfering RNA-mediated knockdown in SMCs, which resulted in impaired network complexity and survival of LM-derived SMC cocultures. The present study is the first to show that SMCs from distinct embryonic origins differ in their ability to support HUVEC network formation. LM-derived SMCs best supported endothelial cell network complexity and survival in vitro, in part through increased expression of MDK. A lineage-specific approach might be beneficial for vascular tissue engineering and therapeutic revascularization.

  • 出版日期2016-7