摘要

Highly porous titania network (CPTN) has been prepared using the protein entrapped cellulose gel as structural template via a template-assisted sol-gel process. The key point toward highly porous titania network lies in the entrapped proteins with template. To elucidate this, the effect of protein loading of template on the structure of final material was investigated. It reveals that high protein loading in cellulose gel gives rise to both large macroporosity and large surface area of final titania network. Specially, highly porous titania network is possessed of bimodal pore system and withstands high compressive pressure over 19 MPa. The highly porous titania network is found to have higher catalytic activity for the photodegradation of methylene blue than its counterpart of commercial P25 and microporous titania one (CTN) that derived from the pure cellulose gel. As a result, the macropores of titania network serve as the leading role in improving the photocatalytic activity. The proposed method might be applied to fabricate other inorganic network with desired macropore structure.

全文