摘要

The negative effects of elevated concentrations of inorganic aluminium on aquatic organisms are well documented. Acid deposition is often cited as a main driver behind the mobilisation and speciation of aluminium in soils and surface waters. In the study, we tested the hypothesis that sulphur deposition is the main driver for elevated concentrations of inorganic aluminium in 114 base poor, boreal Swedish streams. However, the deposition of anthropogenic sulphate has decreased substantially since it peaked in the 1970s, and at the current deposition levels, we hypothesise that local site parameters play an important role in determining vulnerability to elevated concentrations of inorganic aluminium in boreal stream waters. Presented here are the results of a principal components analysis of stream water chemistry, acid deposition data and local site variables, including forest composition and stem volume. It is shown that the concentrations of both organic and inorganic aluminium are not explained by either historical or current acid deposition, but are instead explained by a combination of local site characteristics. Sites with elevated concentrations of inorganic aluminium were characterised by small catchments (< 500 ha) dominated by mature stands of Norway spruce with high stem volume. Using data from the Swedish National Forest Inventory the area of productive forest land in Sweden with a higher vulnerability for elevated inorganic aluminium concentrations in forests streams is approximately 1.5 million hectares or 7% of the total productive forest area; this is higher in the south of Sweden (10%) and lower in the north (2%). A better understanding of the effects of natural processes and forest management in controlling aquatic inorganic aluminium concentrations is therefore important in future discussions about measures against surface water acidification.

  • 出版日期2010-7