摘要

Wave propagation in wireless body area networks (WBAN) is analytically modeled as a polarized point source close to an elliptic lossy dielectric cylinder. Using the Fourier transform along the axes, the expansion in terms of Mathieu functions in cross section, and the impedance boundary condition (IBC) on surface, the field distribution outside the cylinder can be formulated. In particular, the path gain of propagation around the human body is described in detail for 915-MHz and 2.40-GHz bands toward industrial, scientific, and medical (ISM) applications.

全文