摘要

Inclusion complexation behavior of 4-aminoazobenzene (AAB) and 4-amino-2,3 '-dimethyl azobenzene (GBC, fast grant GBC) with alpha- and beta-cyclodextrins (alpha-CD, beta-CD) is analyzed by scanning electron microscope, transmission electron microscope, Fourier transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction, and proton nuclear magnetic resonance spectroscopy techniques. Transmission electron microscope analysis suggests that identical nanorods formed in AAB/CD inclusion complexes while different dimension nanostructures were observed in GBC/CD inclusion complexes. The nanostructures confirmed that the ratio of 2:2 (guest:host) inclusion complex has been developed to a miniature nanorod. Nanosecond time-resolved fluorescence studies indicated that AAB/GBC have fast life time in water, whereas slow life time in CDs corresponds to a higher-order structure of 2:2 complexes. Thermodynamic parameters and binding affinity of the inclusion complex formation were determined and discussed. van der Waals interactions are mostly responsible for enthalpy-driven complex formation of AAB and GBC with cyclodextrins.

  • 出版日期2014-6-15