摘要

Purpose: To present the clinical setup and workflow of a robotic assistance system for image-guided interventions in a conventional magnetic resonance imaging (MRI) environment and to report our preliminary clinical experience with percutaneous biopsies in various body regions.
Materials and Methods: The MR-compatible, servo-pneumatically driven, robotic device (Innomotion) fits into the 60-cm bore of a standard MR scanner. The needle placement (n = 25) accuracy was estimated by measuring the 3D deviation between needle tip and prescribed target point in a phantom. Percutaneous biopsies in six patients and different body regions were planned by graphically selecting entry and target points on intraoperatively acquired roadmap MR data.
Results: For insertion depths between 29 and 95 mm, the average 3D needle deviation was 2.2 +/- 0.7 mm (range 0.9-3.8 mm). Patients with a body mass index of up to approximate to 30 kg/m(2) fitted into the bore with the device. Clinical work steps and limitations are reported for the various applications. All biopsies were diagnostic and could be completed without any major complications. Median planning and intervention times were 25 (range 20-36) and 44 (36-68) minutes, respectively.
Conclusion: Preliminary clinical results in a standard MRI environment suggest that the presented robotic device provides accurate guidance for percutaneous procedures in various body regions. Shorter procedure times may be achievable by optimizing technical and workflow aspects.

  • 出版日期2010-4