摘要

Due to the increasing understanding of the health benefits and chemopreventive properties of flavonoids, there continues to be significant effort dedicated to improved analytical methods for characterizing the structures of flavonoids and monitoring their levels in fruits and vegetables, as well as developing new approaches for mapping the interactions of flavonoids with biological molecules. Tandem mass spectrometry (MS/MS), particularly in conjunction with liquid chromatography (LC), is the dominant technique that has been pursued for elucidation of flavonoids. Metal complexation strategies have proven to be especially promising for enhancing the ionization of flavonoids and yielding key diagnostic product ions for differentiation of isomers. Of particular value is the addition of a chromophoric ligand to allow the application of infrared (IR) multiphoton dissociation as an alternative to collision-induced dissociation (CID) for the differentiation of isomers. CID, including energy-resolved methods, and nuclear magnetic resonance (NMR) have also been utilized widely for structural characterization of numerous classes of flavonoids and development of structure/activity relationships. The gas-phase ion chemistry of flavonoids is an active area of research particularly when combined with accurate mass measurement for distinguishing between isobaric ions. Applications of a variety of ab initio and chemical computation methods to the study of flavonoids have been reported, and the results of computations of ion and molecular structures have been shown together with computations of atomic charges and ion fragmentation. Unambiguous ion structures are obtained rarely using MS alone. Thus, it is necessary to combine MS with spectroscopic techniques such as ultraviolet (UV) and NMR to achieve this objective. The application of NMR data to the mass spectrometric examination of flavonoids is discussed.

  • 出版日期2008-12