摘要

We determined the effects of exogenous nitric oxide on photosynthesis and gene expression in transgenic rice plants (PC) over-expressing the maize C-4 pepc gene, which encodes phosphoenolpyruvate carboxylase (PEPC). Seedlings were subjected to treatments with NO donors, an NO scavenger, phospholipase inhibitors, a Ca2+ chelator, a Ca2+ channel inhibitor, and a hydrogen peroxide (H2O2) inhibitor, individually and in various combinations. The NO donors significantly increased the net photosynthetic rate (P-N) of PC and wild-type (WT), especially that of PC. Treatment with an NO scavenger did inhibit the P-N of rice plants. The treatments with phospholipase inhibitors and a Ca2+ chelator decreased the P-N of WT and PC, and photosynthesis was more strongly inhibited in WT than in PC. Further analyses showed that the NO donors increased endogenous levels of NO and PLD activity, but decreased endogenous levels of Ca2+ both WT and PC. However, there was a greater increase in NO in WT and a greater increase in PLD activity and Ca2+ level in PC. The NO donors also increased both PEPC activity and pepc gene expression in PC. PEPC activity can be increased by SNP alone. But the expression of its encoding gene in PC might be regulated by SNP, together with PA and Ca2+.