摘要

Modern Remotely Piloted Aircraft Systems (RPAS) employ a variety of sensors and multi-sensor data fusion techniques to provide advanced functionalities and trusted autonomy in a wide range of mission essential and safety-critical tasks. In particular, Navigation and Guidance Systems (NGS) for small RPAS require a typical combination of lightweight, compact and inexpensive sensors to satisfy the Required Navigation Performance (RNP) in all flight phases. In this paper, the synergies attainable by the combination of Global Navigation Satellite System (GNSS), Micro-Electromechanical System based Inertial Measurement Unit (MEMS-IMU) and Vision-Based Navigation (VBN) sensors are explored. In case of VBN, an appearance-based navigation technique is adopted and feature extraction/optical flow methods are employed to estimate the navigation parameters during precision approach and landing phases. A key novelty of the proposed approach is the employment of Aircraft Dynamics Models (ADM) augmentation to compensate for the shortcomings of VBN and MEMS-IMU sensors in high-dynamics attitude determination tasks. To obtain the best estimates of Position, Velocity and Attitude (PVA), different sensor combinations are analysed and dynamic Boolean Decision Logics (BDL) are implemented for data selection before the centralised data fusion is accomplished. Various alternatives for data fusion are investigated including a traditional Extended Kalman Filter (EKF) and a more advanced Unscented Kalman Filter (UKF). A novel hybrid controller employing fuzzy logic and Proportional Integral -Derivative (PID) techniques is implemented to provide effective stabilisation and control of pitch and roll angles. After introducing the key mathematical models describing the three NGS architectures: EKF based VBN-IMU-GNSS (VIG) and VBN-IMU-GNSS-ADM (VIGA) and UKF based Enhanced VIGA (EVIGA), the system performances are compared in a small RPAS integration scheme (i.e., AEROSONDE RPAS " platform) exploring a representative cross-section of the aircraft operational flight envelope. A dedicated ADM processor (i.e., a local pre-filter) is adopted in the EVIGA architecture to account for the RPAS manoeuvring envelope in different flight phases (assisted by a manoeuvre identification algorithm), in order to extend the ADM validity time across all segments of the RPAS trajectory. Simulation results show that the VIG, VIGA and EVIGA systems are compliant with ICAO requirements for precision approach down to CAT-II. In all other flight phases, the VIGA system shows improvement in PVA data output with respect to the VIG system. The EVIGA system shows the best performance in terms of attitude data accuracy and a significant extension of the ADM validity time is achieved in this configuration.

  • 出版日期2016-11