Dacomitinib (PF-00299804), a second-generation irreversible pan-erbB receptor tyrosine kinase inhibitor, demonstrates remarkable activity against HER2-amplified uterine serous endometrial cancer in vitro

作者:Zhu Liancheng; Lopez Salvatore; Bellone Stefania; Black Jonathan; Cocco Emiliano; Zigras Tiffany; Predolini Federica; Bonazzoli Elena; Bussi Beatrice; Stuhmer Zachary; Schwab Carlton L; English Diana P; Ratner Elena; Silasi Dan Arin; Azodi Masoud; Schwartz Peter E; Rutherford Thomas J; Santin Alessandro D*
来源:Tumor Biology, 2015, 36(7): 5505-5513.
DOI:10.1007/s13277-015-3218-4

摘要

Uterine serous carcinoma (USC) is an aggressive subtype of endometrial cancer that carries an extremely poor prognosis. Up to 35% of USC may overexpress the epidermal growth factor receptor-2 (HER2/neu) at strong (i.e., 3+) level by immunohistochemistry (IHC) or harbor HER2/neu gene amplification by fluorescence in situ hybridization (FISH). In this study, we assessed the sensitivity of a panel of USC cell lines with and without HER2/neu gene amplification to dacomitinib (PF-00299804), an irreversible pan-human epidermal growth factor receptor tyrosine kinase inhibitor. Eight primary cell lines (i.e., four harboring HER2/neu gene amplification by FISH and four FISH-cell lines), all demonstrating similar in vitro growth rates, were evaluated in viability/proliferation assays. The effect of dacomitinib on cell growth, cell cycle distribution, and signaling was determined using flow cytometry-based assays. Dacomitinib caused a significantly stronger growth inhibition in HER2/neu FISH+ USC cell lines when compared to FISH- USC (dacomitinib half maximal inhibitory concentration (IC50) mean+/-SEM= 0.02803+/-0.003355 mu M in FISH+ versus 1.498+/-0.2209 mu M in FISH- tumors, P<0.0001). Dacomitinib growth inhibition was associated with a significant and dose-dependent decline in phosphorylated HER2/neu and S6 transcription factor and a dose-dependent and time-dependent cell cycle arrest in G0/G1 in FISH+ USC. Dacomitinib is remarkably effective against chemotherapy-resistant HER2/neu gene-amplified USC. Clinical studies with dacomitinib in HER2/neu FISH+ USC patients resistant to standard salvage chemotherapy are warranted.