摘要

The key points to consider in determining the effectiveness of using structural isolation with shape memory alloys (SMA) are the constitutive model, the SMA isolation device and the analysis method. In this paper, a simplified constitutive model based on the classic theory of plasticity is proposed to simulate the behavior of the superelasticity of the SMA, in which the martensite volume fraction is considered as one of the state variables. Comparisons between simulation results and experimental results are made and indicate that the proposed constitutive model yields stress-strain curves that are in good agreement with the experimental ones. Thus, the proposed model can correctly simulate the yield mechanism and energy dissipation capacity of the SMA. Next, in order to make full use of the superelasticity of SMA, a new SMA isolator composed of pre-tensioned SMA bars is presented. Then, a finite element analytical model is established to simulate the behavior of the SMA isolator according to its configuration and simplified constitutive model. Finally, a simplified design method for long-span structures installed with SMA isolators is proposed, which is further used to investigate the isolation effects of a space grid structure. Results show that the SMA isolator can reduce the seismic responses of the structure effectively, which indicates the effectiveness of the proposed SMA isolation method.