摘要

To develop control algorithms that taking maximum advantage of rapidly varying rheological properties of MR elastomer devices, models must be developed that can adequately characterize the smart material's intrinsic nonlinearity. However, most existing MRE models are only effective within a narrow strain amplitude range and under certain loading frequencies. To derive a MRE model with better applicability, MR elastomer samples were fabricated and their steadystate response under harmonic loading with different strain amplitudes, frequencies and magnetic fields were tested. Following a review of several existing models of MR elastomer, a new revised Bouc- Wen model is proposed that can effectively portray the behavior of the material. Comparison with experimental results indicates that the model is accurate over a wide range of frequencies, strain amplitudes and magnetic flux densities. A simplified model was then proposed after parametric study. As the magnetic field is the only determinant of the parameters, the simplified model is adequate for base isolation devices design and simulation.