摘要

Intensity-invariant local phase features based on Log-Gabor filters have been recently shown to produce highly accurate localizations of bone surfaces from three-dimensional (3-D) ultrasound. A key challenge, however, remains in the proper selection of filter parameters, whose values have so far been chosen empirically and kept fixed for a given image. Since Log-Gabor filter responses widely change when varying the filter parameters, actual parameter selection can significantly affect the quality of extracted features. This article presents a novel method for contextual parameter selection that autonomously adapts to image content. Our technique automatically selects the scale, bandwidth and orientation parameters of Log-Gabor filters for optimizing local phase symmetry. The proposed approach incorporates principle curvature computed from the Hessian matrix and directional filter banks in a phase scale-space framework. Evaluations performed on carefully designed in vitro experiments demonstrate 35% improvement in accuracy of bone surface localization compared with empirically-set parameterization results. Results from a pilot in vivo study on human subjects, scanned in the operating room, show similar improvements. (E-mail: rafeef@ece.ubc.

  • 出版日期2011-10