摘要

In this paper, formulation of the thin cylindrical shell via the modified couple stress theory by taking account of shear deformation and rotary inertia is obtained. To do this, the study developed the first shear deformable cylindrical shell theory by considering the size effects via the couple stress theory and the equations of motion of shell with classical and non-classical boundary conditions were extracted through Hamilton's principle. In the end, as an example, free vibrations of the single-walled carbon nanotube (SWCNT) were investigated. Here, the SWCNT was modeled as a simply supported shell, and the Navier procedure was used to solve the vibration problem. The results of the new model were compared with those of the classical theory, pointing to the conclusion that the classical model is a special case of the modified couple stress theory. The findings also demonstrate that the rigidity of the nano-shell in the modified couple stress theory compared with that in the classical theory is greater, resulting in the increase in natural frequencies. In addition, the effect of the material length scale parameter on the vibrations of the nano-shell in different lengths and thickness was investigated.

  • 出版日期2015-4