MESSENGER observations of dipolarization events in Mercury%26apos;s magnetotail

作者:Sundberg Torbjoern*; Slavin James A; Boardsen Scott A; Anderson Brian J; Korth Haje; Ho George C; Schriver David; Uritsky Vadim M; Zurbuchen Thomas H; Raines Jim M; Baker Daniel N; Krimigis Stamatios M; McNutt Ralph L Jr; Solomon Sean C
来源:Journal of Geophysical Research, 2012, 117: A00M03.
DOI:10.1029/2012JA017756

摘要

Several series of large dipolarization events are documented from magnetic field observations in Mercury%26apos;s magnetotail made by the MESSENGER spacecraft. The dipolarizations are identified by a rapid (similar to 1 s) increase in the northward component of the magnetic field, followed by a slower return (similar to 10 s) to pre-onset values. The changes in field strength during an event frequently reach 40 nT or higher, equivalent to an increase in the total magnetic field magnitude by a factor of similar to 4 or more. The presence of spatially constrained dipolarizations at Mercury provides a key to understanding the magnetic substorm process in a new parameter regime: the dipolarization timescale, which is shorter than at Earth, is suspected to lead to efficient non-adiabatic heating of the plasma sheet proton population, and the high recurrence rate of the structures is similar to that frequently observed for flux ropes and traveling compression regions in Mercury%26apos;s magnetotail. The relatively short lifetime of the events is attributed to the lack of steady field-aligned current systems at Mercury.

  • 出版日期2012-9-6