摘要

The elasticity of the extracellular matrix profoundly affects biological responses of cells, but also their mechanical properties. Single cell mechanical properties are often measured by atomic force microscopy (AFM), but technical guidelines for AFM measurement of cells grown on soft substrates are not well established. In this study, the local and global elastic moduli of aortic valve interstitial cells (VICs) cultured on soft polyacrylamide substrates (3-144 kPa) were characterized via AFM force mapping using pyramidal and spherical tips, respectively. Local and global VIC modulus values both increased with substrate stiffness (p<0.05), with the average local cell modulus being consistently two to three times greater than the global modulus (p<0.05). For local measurements, a minimum of four measurements was required to observe the trend of increasing cell modulus with substrate stiffness, but there was no advantage to testing additional spots. The Hertz model was relatively accurate in estimating the global cell elastic modulus (<12% error, based on validated finite element analyses), despite the cells being of finite thickness and grown on deformable substrates, neither of which are accounted for in the Hertz model. The results of this study provide practical guidelines for efficient AFM-based measurement of the mechanical properties of cells on gels. They also provide new physiologically-relevant data on VIC mechanical properties and their correlation with substrate stiffness-dependent cytoskeletal changes, with relevance to heart valve mechanobiology and disease.

  • 出版日期2013-7-26