A bHLH Complex Activates Vascular Cell Division via Cytokinin Action in Root Apical Meristem

作者:Ohashi Ito Kyoko*; Saegusa Maria; Iwamoto Kuninori; Oda Yoshihisa; Katayama Hirofumi; Kojima Mikiko; Sakakibara Hitoshi; Fukuda Hiroo
来源:Current Biology, 2014, 24(17): 2053-2058.
DOI:10.1016/j.cub.2014.07.050

摘要

Higher organisms possess mechanisms to maintain stem cells%26apos; proliferative and pluripotent states in stem cell niches [1]. Plants possess two types of stem cell niches in the root and shoot apical meristems, where regulatory interactions exist between stem cells and organizing cells. Recent studies provided new insights into the molecular mechanism of stem cell maintenance [2-4]. However, earlier and more essential developmental events such as the acquisition of stem cell proliferative activity are still unknown. In vascular tissues, procambial cells function as stem cells and differentiate into xylem, phloem, and procambium. Procambial cell proliferation starts at root apical meristem (RAM) postembryonically; therefore, procambial cell development in RAM is a good model for investigating the regulation of stem cell proliferation. LONESOME HIGHWAY (LHW) and TARGET OF MONOPTEROS5 (TMO5), as well as its homolog, TMO5-LIKE1 (T5L1), encode bHLH proteins that function as heterodimers (LHW-TMO5 and LHW-T5L1) in vascular tissue organization [5-7]. LHW-T5L1 promotes vascular-cell-specific proliferation in RAM [7]. Here, we demonstrate that LHW-T5L1 promotes expression of key cytokinin production genes, including LONELY GUY3 (LOG3) and LOG4, in xylem precursor cells, resulting in elevated cytokinin levels in the surrounding cells. LHW-T5L1 can also promote expression of AHP6, which suppresses cytokinin signaling and then maintains xylem precursor cells at a nondividing state. Our results indicate that LHW-T5L1 establishes xylem precursor cells as a signal center that promotes procambial-cell-specific proliferation through cytokinin response.

  • 出版日期2014-9-8
  • 单位RIKEN