摘要

This study presents two relevant effects influencing the electronic transport of nanowire transistors. We first focus on the ionized impurity impacts and calculate the current characteristics with a self-consistent three-dimensional (3D) Green's function approach. The results show the effects of both acceptor and donor impurities on the physical electron properties. In particular, we emphasize that the presence of a donor induces different transport phenomena according to the applied gate bias. In a second part, we report a numerical study of the self-energy correction due to correlation effects from dynamic screening of the moving electron in silicon nanowire transistors. This many-body effect, which is not included in the usual Hartree approximation, is then incorporated self-consistently into a non-equilibrium Green's NEGF) code. The results pinpoint the importance of dielectric confinement whose magnitude can not be neglected compared to its quantum counterpart in ultimate nanowire transistors.

  • 出版日期2009-10