摘要

Dysregulation of microRNA (miRNA) expression in various cancers and their role in cancer progression is well documented. The purpose of this study was to investigate the biological role of miR-372 in human pancreatic adenocarcinoma (HPAC). We collected 20 pairs of HPAC tissues and adjacent non-cancerous tissues to detect miR-372 expression levels. We transfected BXPC-3 and PANC-1 cells with miR-372 inhibitor/mimics to study their effect on cell proliferation, apoptosis, invasion, migration and autophagy. In addition, miR-372 mimics and a tumor protein UNC51-like kinase 1 (ULK1) siRNA were co-transfected into BXPC-3 and PANC-1 cells to explore the mechanism of miR-372 and ULK1 on HPAC tumorigenesis. We found that the expression of miR-372 was markedly downregulated in HPAC cells compared to adjacent normal tissues. Furthermore, functional assays showed that miR-372 inhibited cell proliferation, invasion, migration and autophagy in BXPC-3 and PANC-1 cells. An inverse correlation between miR-372 expression and ULK1 expression was observed in HPAC tissues. Downregulation of ULK1 inhibited the overexpression effects of miR-372, and upregulation of ULK1 reversed the effects of overexpressed miR-372. Finally, we found that silencing ULK1 or inhibiting autophagy partly rescued the effects of miR-372 knockdown in HPAC cells, which may explain the influence of miR-372/ULK1 in HPAC development. Taken together, these results revealed a significant role of the miR-372/ULK1 axis in suppressing HPAC cell proliferation, migration, invasion and autophagy.