摘要

N-hydroxyphthalimide (NHPI) combined with stable and recoverable transition metal-aluminium binary hydrotalcite-like compounds (M-Al HTLcs, M = Cu, Ni, Co) as an unprecedented catalytic system was demonstrated for the allylic carbonylation, as the model reaction, of cyclic olefins with tert-butyl hydroperoxide (TBHP), using isophorone (IP) to ketoisophorone (KIP). The results showed NHPI combined with Cu-Al HTLcs to be an efficient catalytic system and the influences of various reaction conditions of the catalytic reaction were optimised. A maximum IP conversion of 68.0 % with 81.8 % selectivity to KIP was afforded under the optimal reaction conditions. Experiments of repeatability and restorability showed Cu-Al HTLcs to be stable for at least five cycles without noticeable loss of catalytic activity. Expanding substrates could also be efficiently converted to the corresponding ketones under the optimised reaction conditions with appreciable yields. A plausible catalytic reaction mechanism was proposed.