摘要

Supply reliability can be effectively improved by a normally closed-loop operation of a distribution network with dual sources, in which there might be large circulating power flow. A unified power flow controller (UPFC) has the powerful capability to adjust the power flow, but it would face a technoeconomic bottleneck when applied to the distribution system. Based on the constant current load model, the power flow distribution of a normally closed-loop distribution network with dual sources is analyzed, and the relationship between the network loss, the voltage deviation of load nodes, and the compensated voltage is deduced. Then, the optimal power flow control model is presented considering such economic factors as the network loss, the voltage deviation of load nodes, and the cost of the apparatus used to produce the compensated voltage. In order to simplify the problem of multiobjective optimization into a single-objective optimization model, the fuzzy membership functions and their weight coefficients of the network loss, the voltage deviation, and the UPFC's cost are designed, and the weights are determined according to their contribution in economy. The optimal control model is solved with the global optimal algorithm. Simulation results based on PSCAD prove that this method can ensure overall economy of the system with balancing the power distribution, controlling the node voltage deviation, and decreasing the active power loss of the network effectively.