摘要

A general method for fault detection and isolation (FDI) is proposed and applied to inverter faults in drives of electric vehicles (EVs). This method is based on a change detection algorithm, which allows multiple fault indices (FIs) to be combined to retrieve the most likely state of the drive. The drive topology under study is a six-leg inverter associated with a three-phase open-end winding machine. Due to the inherent fault-tolerant topology, the conventional FIs are no longer effective. Therefore, an analysis of simulations under faulty conditions leads to the derivation of suitable FIs. These are based on the envelope of the phase currents, as well as their instantaneous frequency. Specific operating conditions related to the EV environment are taken into account, such as the flux-weakening region and energy recovery. In these modes of operation, FDI can be affected by uncontrolled currents circulating through the free-wheeling diodes. Finally, the performances of the FDI scheme are evaluated under steady-state and nonstationary conditions through simulations and experimental results.

  • 出版日期2013-3