摘要

With the help of shear-lag theory, load transfer analysis is performed on the carbon nanotube reinforced polymer composites with interfacial crystallization of different morphologies, including transcrystallinity layer (TCL) and nanohybrid shish-kebab (NHSK) structures. By comparison, we find that the TCL structures can ease the burden of the CNT while the NHSK structures can lead to a fluctuating distribution of the axial stress in the CNT. Both structures can improve the effective elastic modulus of the composites, though the effect of the TCL structures is more pronounced. Besides, the enhancement of the load transfer efficiency of the composites is also observed, the study of the interfacial stress on different kinds of interfaces shows that the reinforcing effect of the TCL structures is sensitive to both the CNT/crystalline polymer interface and crystalline polymer/amorphous polymer interface, while the major decisive factor for the NHSK structures is confined to be the CNT/crystalline polymer interface because of the interlocking effect. Based on these features, some suggestions are given for tailoring the high-performance carbon nanotube reinforced polymer composites.