Novel geometry type of nanocarriers mitigated the phagocytosis for drug delivery

作者:Lin Shuian Yin; Hsu Wei Hsin; Lo Jem Mau; Tsai Hsieh Chih; Hsiue Ging Ho*
来源:Journal of Controlled Release, 2011, 154(1): 84-92.
DOI:10.1016/j.jconrel.2011.04.023

摘要

Target geometry for mitigating phagocytosis has garnered considerable attention recently in the drug delivery field. This study examined nanoparticles (NPs) with same volume but different shapes, namely, spherical NPs (SNPs) and hexagonal nanoprisms (HNPs), and analyzed their behaviors in vitro and in vivo. These NPs were constructed with a multifunctional block copolymer component, mPEG-b-P(HEMA-co-histidine-PLA). Geometry of SNPs and HNPs was controlled by adjusting copolymer properties and particle size was controlled by adjusting formulation parameters. Nanoparticle morphology had no effect in mitigating phagocytosis when NP size was 70 nm; however, morphology had a significant effect when NP size was 120 nm. The radioactivity-time curves for (99m)Tc-labeled NPs, fitted by the two-compartment pharmacokinetic model, show that the prolonged plasma distribution half-life of HNPs is indicative in the bloodstream. The in vitro and in vivo studies reveal that dual stealth characteristics, pegylation and hexagonal prism structure, of nanocarriers can be adopted in clinical application for safe and efficient delivery of cancer therapy.