Diagnosis of Tropical Biases and the MJO from Patterns in the MERRA Analysis Tendency Fields

作者:Mapes Brian E*; Bacmeister Julio T
来源:Journal of Climate, 2012, 25(18): 6202-6214.
DOI:10.1175/JCLI-D-11-00424.1

摘要

The Modern-Era Reanalysis for Research and Applications (MER RA) is realistic, including its Madden Julian oscillation (MJO), which the underlying model [Goddard Earth Observing System, version 5 (GEOS-5)] lacks. In the MERRA budgets, analysis tendencies (ATs) make evolution realistic despite model shortcomings. The ATs are the negative of physical process errors, if dynamical tendencies are accurate. Pattern resemblances between ATs and physical tendencies suggest which processes are erroneous. The authors examined patterns of tropical ATs in four dimensions and found several noteworthy features. Temperature AT profiles show that moist physics has erroneous sharp cooling at 700 hPa, a signature of misplaced melting and perhaps excessive precipitation evaporation. This excites a distinctive (fingerprint) erroneous short vertical wavelength temperature structure, perhaps a cause of the GEOS-5 too-slow convectively coupled waves. The globe%26apos;s largest AT of 200-hPa wind stems from overactive heating over the intra-Americas seas region in summer, with the same moist physics fingerprint. The erroneous heating produces a baroclinic vortex that is countered by ATs opposing its temperature and momentum fields in a thermal wind balanced sense. Lack of restraint in the deep convection scheme is also indicated in MJO composites, where the water vapor AT is anomalously positive on the leading edge, indicating a premature vapor sink. Since GEOS-5 lacks an MJO, this diagnosis suggests that the transition from shallow to deep convection (moistening to drying) is crucial in the real-world MJO. This is not news, but its diagnosis by ATs provides an objective, repeatable way to measure the effect that could be a useful guide in model development.

  • 出版日期2012-9-15