Atomic Layer Etching Mechanism of MoS2 for Nanodevices

作者:Kim Ki Seok; Kim Ki Hyun; Nam Yeonsig; Jeon Jaeho; Yim Soonmin; Singh Eric; Lee Jin Yong; Lee Sung Joo; Jung Yeon Sik; Yeom Geun Young; Kim Dong Woo
来源:ACS APPLIED MATERIALS %26 INTERFACES, 2017, 9(13): 11967-11976.
DOI:10.1021/acsami.6b15886

摘要

Among the layered transition metal dichalcogenides (TMDs) that can form stable two-dimensional crystal structures, molybdenum disulfide (MoS2) has been intensively investigated because of its unique properties in various electronic and optoelectronic applications with different band gap.energies from 1.29 to 1.9 eV as the number of layers decreases. To control the MoS2 layers, atomic layer etching (ALE) (which is a cyclic etching consisting of a radical -adsorption step such as Cl adsorption and a reacted -compound -desorption step via a low -energy Ar+ ion exposure) can be a highly effective technique to avoid -inducing damage and contamination that occur during the reactive steps. Whereas graphene is composed of one -atom -thick layers, MoS2 is composed of three-atom-thick S-(top)-Mo-(mid)-S-(bottom) layers; therefore, the ALE mechanisms of the two structures are significantly different In this study, for MoS, ALE, the Cl radical is used as the adsorption species and a low -energy Ar4+ ion is used as the desorption species. A MoS2 ALE mechanism (by which the S-(top), Mo-(mid), and S-(bottom) atoms are sequentially removed from the MoS2 crystal structure due to the trapped Cl atoms between the S-(top) layer and the Mo-(mid) layer) is reported according to the results= of an experiment and a sithulation. In addition, the ALE technique shows that a monolayer MoS2 field effect transistor (FET) fabricated after one cycle of -ALE is undamaged and exhibits electrical characteristics similar to those of a pristine monolayer MoS2 FET. This technique is also applicable to all layered TMD materials, such as tungsten disulfide (WS2), molybdenum diselenide (MoSe2), and tungsten diselenide (WSe2).

  • 出版日期2017-4-5