摘要

Maternal separation (MS) has been demonstrated to up-regulate the hypothalamic vasopressin (VP) system. Intracerebrally released VP has been demonstrated to affect several types of animal behaviour, such as active/passive avoidance, social recognition, and learning and memory. However, the role of VP in spatial learning remains unclear. In the present study, we investigated the effects of an osmotic challenge and a V1b receptor-specific (V1bR) antagonist, SSR149415, on spatial learning of maternally separated and animal facility reared (AFR) adult male Wistar rats. The osmotic challenge was applied by injecting a hypertonic saline solution, 1 h before the Morris water maze test (MWM). V1bR antagonist SSR149415 (5 mg/kg) was injected i.p. twice (1 h and 30 min) previous to the MWM. A combined treatment with both osmotic challenge and the SSR149415 was applied to the third group whereas rats for basal condition were injected with isotonic saline. Under basal condition no differences between AFR and MS groups were observed. MS rats showed severe impairment during the MWM after the osmotic challenge, but not after the administration of SSR149415. For AFR rats, the opposite phenomenon was observed. The joint application of SSR149415 and osmotic challenge restored the spatial learning ability for both groups. The differential impairment produced by osmotic stress-induced up-regulation and SSR149415 induced V1bR blockage in MS and control rats suggested that VP involvement in spatial learning depends on the individual intrinsic ligand-receptor functional state.

  • 出版日期2012-10-24