摘要

Time series analysis of satellite data can be used to monitor temporal dynamics of forested environments, thus providing spatial data for a range of forest science, monitoring and management issues. The moderate resolution imaging spectro-radiometer (MODIS) vegetation index (MOD13Q1) product has potential for monitoring forest dynamics and disturbances. However, the suitability of the product to accurately measure temporal changes due to phenology and disturbances is questionable as the effects of variable solar and viewing geometry have not been removed from these data. This study aimed to examine the impact that viewing and illumination geometry differences had on MOD13Q1 vegetation index values, and their subsequent ability to map changes arising from phenology and disturbances in a number of forest communities in Queensland, Australia. MOD13Q1 normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) were compared to normalized NDVI and EVI (NDVInormalized and EVInormalized), which were derived from the reflectance modelled from a bidirectional reflectance distribution BRDF)/albedo parameters product (MCD43A1) using fixed viewing and illumination geometry. Time series plots of the vegetation index values from a number of pixels representing different forest types and known disturbances showed that the NDVInormalized time series was more effective at capturing the changes in vegetation than the NDVI. MOD13Q1 NDVI showed higher seasonal amplitude, but was less accurate at capturing phenology and disturbances compared to the NDVInormalized. The EVI was less affected by variable viewing and illumination geometry in terms of amplitude, but was affected in terms of time shift in periodicities providing erroneous information on phenology. More studies in different environments with appropriate vegetation phenology reference data will be needed to confirm these observations.

  • 出版日期2011