摘要

Human peripheral blood natural killer progenitors represent a flexible, heterogeneous population whose phenotype and function are controlled by their membrane-bound IL-15. Indeed, reciprocal membrane-bond IL-15 trans-presentation commits these cells into NK differentiation, while membrane-bound IL-15 stimulation with its soluble ligand (sIL-15Ra) triggers a reverse signal (pERK1/2 and pFAK) that modifies the developmental program of at least two subsets of PB-NKPs. This treatment generates: i) the expansion of an immature NK subset growing in suspension; ii) the appearance of an unprecedented adherent non-proliferative subset with a dendritic morphology co-expressing marker, cytokines and functions typical of myeloid dendritic cells (CD1a(+)/BDCA1(+)/IL-12(+)) and NK cells (CD3(-)/NKp46(+)/CD56(+)/IFN gamma(+)). The generation of these putative NK/DCs is associated to the rapid inhibition of negative regulators of myelopoiesis (the transcription factors STAT6 and GATA-3) followed by the transient upregulation of inducers of myeloid development, such as the transcription factors (PU.1, GATA-1) and the anti-apoptotic molecule (MCL-1)

  • 出版日期2011-5