摘要

Underwater acoustic sensor networks (UASNs) have been developed for a set of underwater applications, including resource exploration, pollution monitoring, and tactical surveillance. Topology control techniques of UASNs are significantly different from those of terrestrial wireless sensor networks, due to the properties of underwater environments and acoustic communications. This research begins with a scale-free network model for calculating edge probability, which is used to generate initial topology randomly. Subsequently, a topology control strategy based on complex network theory (TCSCN) is put forward to construct a double clustering structure, where there are two kinds of cluster-heads to ensure connectivity and coverage, respectively. The performance of TCSCN is analyzed through simulation experiments that indicate a well-constructed topology, where (1,xi)-Coverage and (1,zeta)-Connectivity can be achieved while optimizing energy consumption and propagation delay as much as possible.