Annular Mode-Like Variation in a Multilayer Quasigeostrophic Model

作者:Zhang Yang*; Yang Xiu Qun; Nie Yu; Chen Gang
来源:Journal of the Atmospheric Sciences, 2012, 69(10): 2940-2958.
DOI:10.1175/JAS-D-11-0214.1

摘要

Eddy-zonal flow interactions in the annular modes are investigated in this study using a modified beta-plane multilayer quasigeostrophic (QG) channel model. This study shows the different response of high- and low-phase-speed (frequency) eddies to the zonal wind anomalies and suggests a baroclinic mechanism through which the two eddies work symbiotically maintaining the positive eddy feedback in the annular modes. Analysis also indicates that the different roles played by these two eddies in the annular modes are related to the differences in their critical line distributions. Eddies with higher phase speeds experience a low-level critical layer at the center of the jet. They drive the zonal wind anomalies associated with the annular mode but weaken the baroclinicity of the jet in the process. Lower-phase-speed eddies encounter low-level critical lines on the jet flanks. While their momentum fluxes are not as important for the jet shift, they play an important role by restoring the lower-level baroclinicity at the jet center, creating a positive feedback loop with the fast eddies that extends the persistence of the jet shift. The importance of the lower-level baroclinicity restoration by the low-phase-speed eddies in the annular modes is further demonstrated in sensitivity runs, in which surface friction on eddies is increased to selectively damp the low-phase-speed eddies. For simulations in which the low-phase-speed eddies become inactive, the leading mode of the zonal wind variability shifts from the position fluctuation to a pulsing of the jet intensity. Further studies indicate that the response of the lower-level baroclinicity to the zonal wind anomalies caused by the low-phase-speed eddies can be crucial in maintaining the annular mode-like variations.