摘要

The existence and treatment of rectal cancer are important for the function of defecation and the quality of life. However, the precise mechanisms of rectal carcinogenesis remain unclear. To screen the overexpressed gene in rectal carcinoma, we performed suppressive subtractive hybridization (SSH) on rectal carcinoma cells and the corresponding normal rectal cells. A total of 64 recombinant clones were subjected to DNA sequencing analysis, and 9 known genes were found to overexpressed in the tumors compared with those of the normal tissues. The genes are ST3 beta-galactoside alpha-2,3-sialyltransferase (ST3GAL5), interferon-induced transmembrane protein 3 (IFITM3), platelet-derived growth factor A-associated protein 1 (PDAP1), AlkB alkylating repair homolog 3 (ALKBH3), nucleoside diphosphate linked moiety X (Nudix)-type motif 14 (NUDT14), calponin 2 (CNN2), mitogen-activated protein kinase 14 (MAPK14), aconitase 1 (ACO1), and selenophosphate synthetase 1 (SEPHS1). The expression profiles of the genes were further confirmed in rectal carcinoma cells and the corresponding normal rectal cells of 12 patients by quantitative real-time RT-PCR. Our results revealed that ST3GAL5, IFITM3, PDAP1, ALKBH3, NUDT14, CNN2, MAPK14, ACO1, and SEPHS1 may be involved in rectal carcinogenesis.

  • 出版日期2011-12