摘要

To meet the fast-growing energy demand and, at the same time, tackle environmental concerns resulting from conventional energy sources, renewable energy sources are getting integrated in power networks to ensure reliable and affordable energy for the public and industrial sectors. However, the integration of renewable energy in the ageing electrical grids can result in new risks/challenges, such as security of supply, base load energy capacity, seasonal effects, and so on. Recent research and development in microgrids have proved that microgrids, which are fueled by renewable energy sources and managed by smart grids (use of smart sensors and smart energy management system), can offer higher reliability and more efficient energy systems in a cost-effective manner. Further improvement in the reliability and efficiency of electrical grids can be achieved by utilizing dc distribution in microgrid systems. DC microgrid is an attractive technology in the modern electrical grid system because of its natural interface with renewable energy sources, electric loads, and energy storage systems. In the recent past, an increase in research work has been observed in the area of dc microgrid, which brings this technology closer to practical implementation. This paper presents the state-of-the-art dc microgrid technology that covers ac interfaces, architectures, possible grounding schemes, power quality issues, and communication systems. The advantages of dc grids can be harvested in many applications to improve their reliability and efficiency. This paper also discusses benefits and challenges of using dc grid systems in several applications. This paper highlights the urgent need of standardizations for dc microgrid technology and presents recent updates in this area.

  • 出版日期2017